Equidistribution and Integral Points for Drinfeld Modules

نویسنده

  • D. GHIOCA
چکیده

We prove that the local height of a point on a Drinfeld module can be computed by averaging the logarithm of the distance to that point over the torsion points of the module. This gives rise to a Drinfeld module analog of a weak version of Siegel’s integral points theorem over number fields and to an analog of a theorem of Schinzel’s regarding the order of a point modulo certain primes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equidistribution for Torsion Points of a Drinfeld Module

We prove an equidistribution result for torsion points of Drinfeld modules of generic characteristic. We also show that similar equidistribution statements would provide proofs for the Manin-Mumford and the Bogomolov conjectures for Drinfeld modules.

متن کامل

Integral Points for Drinfeld Modules

We prove that in the backward orbit of a nonpreperiodic (nontorsion) point under the action of a Drinfeld module of generic characteristic there exist at most finitely many points S-integral with respect to another nonpreperiodic point. This provides the answer (in positive characteristic) to a question raised by Sookdeo in [26]. We also prove that for each nontorsion point z there exist at mos...

متن کامل

Effective Equidistribution of S-integral Points on Symmetric Varieties

Let K be a global field of characteristic not 2. Let Z = H\G be a symmetric variety defined over K and S a finite set of places of K. We obtain counting and equidistribution results for the S-integral points of Z. Our results are effective when K is a number field.

متن کامل

Torsion bounds for elliptic curves and Drinfeld modules

We derive asymptotically optimal upper bounds on the number of L-rational torsion points on a given elliptic curve or Drinfeld module defined over a finitely generated field K, as a function of the degree [L : K]. Our main tool is the adelic openness of the image of Galois representations attached to elliptic curves and Drinfeld modules, due to Serre and Pink-Rütsche, respectively. Our approach...

متن کامل

The André-Oort conjecture for products of Drinfeld modular curves

Let Z = X1×· · ·×Xn be a product of Drinfeld modular curves. We characterize those algebraic subvarieties X ⊂ Z containing a Zariski-dense set of CM points, i.e. points corresponding to n-tuples of Drinfeld modules with complex multiplication (and suitable level structure). This is a characteristic p analogue of a special case of the André-Oort conjecture.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007